Commercial Services Combined Synopsis/Request For Quotation FAR Part 12 In Conjunction With Part 13 ## Description: (i) This is a combined synopsis/solicitation for commercial services prepared in accordance with Federal Acquisition Regulation (FAR) 12.6, and supplemental information included in this notice. This announcement constitutes the only solicitation; quotations are being requested and a written solicitation will not be issued. (ii) The reference number for this effort is **DACW37-03-T-0011** and the solicitation is issued as a request for quotation (RFQ). (iii) The provisions and clauses incorporated into this solicitation document are those in effect at the time of publication. Provisions and clauses incorporated by reference have the same force and effect as if they were given in full text. The full text of the Federal Acquisition Regulation (FAR) and Defense Federal Acquisition Regulations supplement (DFARs) can be accessed on the Internet at http://www.arnet.gov/far (iv) This solicitation is set-aside 100% for small business concerns. The associated NAICS code is 541380 and the small business size standard is six million dollars. (v) This requirement consists of 1 line item (0001 – Collection and analysis of well and surface water qty 1 Lot.). (vi) Work to be completed under this purchase order will consist of the following: collection and analysis of well and surface water, analysis of surface and well water for contaminants; metals, fecal coliform, pesticides, PCB's, and in situ monitoring of water levels, temperature, specific conductance, pH, dissolved oxygen (DO), and turbidity at each site, as described and referenced in the scope of work. A detailed description of the line item is included as addendum I, Scope of Work and addendum II, Sampling Protocol. (vii) The testing services being procured will occur in Crawford County WI and all reports and deliverables will be sent FOB destination, St Paul, MN. The estimated period of performance is 180 days from date of award. (viii) The provision at 52.212-1, Instructions to Offerors - Commercial, applies to this solicitation, (ix) The provision at 52.212-2, Evaluation - Commercial Items, applies to this solicitation. The following text is added to Paragraph (a) of FAR 52.212-2: "(Low Price Technically Acceptable). A competitive award will be made to the responsible firm with the lowest priced technically acceptable quote. Each quote at a minimum must meet minimum technical specifications to be technically acceptable, Technical acceptability is on a pass/fail basis. In order to be considered technically acceptable firms must be certified and licensed by the State of Wisconsin, or a state having reciprocity with Wisconsin, to perform efforts outlined within addendum I. Scope of Work. Additional guidance on price is provided under provision 52.212-1 section (g). (x). The provision at 52.212-3, Offeror Representations and Certifications - Commercial Items, applies to this solicitation. The contractor shall return a completed copy of this provision with its quotation. Paragraph (b), Taxpayer Identification Number (TIN), of provision 52.212-3 does not apply. A copy of the provision may be attained from http://www.arnet.gov/far. (xi) The clause at 52.212-4, Contract Terms and Conditions - Commercial Items, applies to this acquisition. (xii) The clause at 52.212-5, Contract Terms and Conditions Required To Implement Statutes Or Executive Orders - Commercial Items, applies to this acquisition. The following FAR clauses identified at paragraph b of FAR 52.212-5 are considered checked and are applicable to this acquisition. 52.203-6, Restrictions on Subcontractor Sales to the Government, with Alternate I; 52.222-26, Equal Opportunity; 52.222-35, Affirmative Action for Special Disabled and Vietnam Era Veterans; 52.222-36, Affirmative Action for Handicapped Workers: 52.222-37, Employment Reports on Special Disabled Veterans and Veterans of the Vietnam Era; 52.222-41 Service Contract Act of 1965; Wage determinations applicable to this purchase order are available in addendum IV; 52.222-42 Statement of Equivalent Rates for Federal Hires; 52.225-13, Restrictions on Certain Foreign purchases; 52.232-33, Payment by Electronic Funds Transfer-Central Contractor Registration. The DFAR clauses at 252.204-7004, Requires Central Contractor Registration, (xiii), To be awarded this contract, the offeror must be registered in the CCR. CCR information may be found at http://www.ccr.gov. The clause at 252,212-7001 Contract Terms and Conditions Required To Implement Statutes Or Executive Orders applicable to Defense acquisitions of commercial items applies to this acquisition. The following clause identified at paragraph b of the clause is considered checked and is applicable to this acquisition. 52.203-3 Gratuities; (xiv) The Defense Priorities and Allocations System (DPAS) is not applicable to this acquisition. (xv) Numbered note number one is applicable to this acquisition. (xvi) Quotations are due at the Army Corps of Engineers Center, 190 Fifth Street East, St. Paul, MN 55101-1638 no later than 10:00 AM CST, Feb 7th 2003. Faxed or emailed of quotes are acceptable. (xvii) The assigned Purchasing Agent for this effort is Mr. Gary P. Miller. Mr. Miller may be reached at Gary.P.Miller@mvp02usace.Army.Mil, (651) 290-5862 or by fax, (651) 290-5706. Requests for addendum I, Scope of Work, addendum II, Sampling Protocol addendum III, Pricing Worksheet and addendum IV, Wage Determination should be made to Mr. Miller. Firms may also download copies of the addendum at the St. Paul districts website at http://www.mvp.usace.army.mil/. Firms must review the addenda in order to quote on this requirement. ## HREP Stage 2 Dredged Material Placement Ground Water Monitoring Scope of Work Scope of Work for the Collection and Analysis of Ground water Samples for the Ambrough Slough HREP Stage 2 Project – Dredged Material Placement. ## 1. GENERAL The St. Paul District, Corps of Engineers (Corps) requires the services of a Contractor to collect groundwater and surface samples for metals, pesticides, PCB's, and some other basic parameters at a dredged material placement site near Prairie du Chien, Wisconsin. The project will be completed in 3 phases. Phase 1 involves the collection of pre-project samples (back ground water and groundwater samples), phase 2 involves the collection of project samples (samples collected while material is being placed in the placement site), and phase 3 involves the collection of post project samples (after material placement is completed). The sample collection network will consist of 3 monitoring wells, 4 residential wells, and 2 surface water sites. The project location is in Crawford County. Figure 1 shows the approximate location of the sampling sites. At each site the contractor shall be responsible for the collection and analysis of water and ground water samples as described in this scope of work and the attached sampling protocol. The contractor shall also conduct in situ monitoring of water level, temperature, specific conductance, pH, dissolved oxygen (DO), and turbidity at each site. The project will begin in WINTER-SPRING 2003 and phase 2 of the project should be complete by September 2003. Phase 3 may extend into 2004 to complete the post project data collection. ## 2. OBJECTIVE The monitoring objective is to characterize pre-project groundwater conditions in the monitoring and surrounding residential wells, monitor the range of impact of the dredging operation using specific conductance as a tracer, and ensure that residential well water quality meets State and Federal water quality criteria after the project is completed. Analytical methods were selected on the basis of ability to detect potential contaminants at low levels. Low-level data is required to determine the effects of the project. Data collected will be used to assess the effects of this and future dredged material disposal on the surrounding groundwater quality. ## 3. LOCATION OF THE WELLS The project location is shown on Figure 1. Three monitoring wells, 4 residential wells and 2 surface wells will be sampled. The proposed residential wells to be sampled are also shown on Figure 1 and are subject to landowner approval. The Contractor is responsible for contacting the landowners prior to each sampling event so the landowner knows when and who will be on their property. Access to individual monitoring wells and/or residential tap water sources shall be agreed upon fully with the landowners and all tenants. All residential wells will be sampled from an exterior spigot that is not connected to a water treatment system (i.e. water softener). The names and addresses of the residents or a contact that is able to provide access to the residential wells will be provided to the contractor. Three (3) monitoring wells with locking caps have been installed specifically for this project. Two (2) of the wells have 2 inch diameter flush jointed PVC casing. The remaining well has a 2 inch diameter stainless steel casing. The monitoring wells are approximately 36-63 feet. Information on the well depths and water levels can be obtained from Mr. Kevin Nelson 651-290-5884. ## 4. COLLECTION OF, AND NUMBER OF SAMPLES Ground water and surface water samples will be collected by the contractor. Sampling is anticipated to begin in early 2003. Sampling is anticipated to consist of pre-project, project and post project sample rounds. The anticipated sample collection schedule will be according to Tables 1 and 2. The contractor will provide all suitable sample containers, equipment and technicians to collect the samples. In addition, sampling equipment shall be rinsed with distilled-deionized water before each new well is sampled. Sampling will be accomplished following the attached sampling protocol. Any deviations from the protocol must be identified and approved
by the Corps prior to contract award. All groundwater **monitoring well samples** will be collected according to the procedures in the attached monitoring well sampling protocol using positive displacement submersible bladder, Grunfos, or similar pump(s). These protocols were derived from the 1995 "Minnesota Pollution Control Agency Ground water Sampling Guidance: Development of Sampling Plans, Protocols and Reports". These procedures include removing a minimum of 3 well volumes prior to sample collection. The pH, specific conductance, temperature, DO, and turbidity will be recorded for each well. Sampling will be conducted after 3 well volumes have been purged and the in situ parameters have stabilized according to the attached monitoring protocol. Purging and sampling rates shall not exceed 0.5 gallons per minute. **Both filtered and unfiltered samples** will be collected at each well during each sampling trip. The unfiltered (whole water) samples will be placed in cold storage until project completion or as directed by the Corps. Analysis of the filtered samples will be conducted for the monitoring well samples. All filtrations will use positive pressure through a 0.45 micron filter. Unfiltered (whole) water samples will be placed in cold storage until project completion or until directed by the Corps. **Residential well samples** will be collected according to the monitoring well sampling protocol with the following modifications. a. **Unfiltered (whole water) samples** will be collected and analyzed. - b. Residential samples will be obtained from outdoor taps. Water shall be run long enough to ensure that "old" water residing in the system (pipes, well, storage tank) is completely purged prior to sampling. Stabilization of in situ parameters is required. - c. Pumping volumes and times for residential wells must be recorded. - d. Inspect taps to ensure there is no aerator attached. - e. Samples will be obtained directly from the tap or connected flow cell for residential wells. Care will be taken to collect samples with **minimal disturbance** to the sample (minimal turbulence and aeration, low discharge rate). **Surface water samples** will be obtained from the Mississippi River just upstream of the dredging activity and the ponding area in the disposal area. The Mississippi River sample obtained upstream of the dredging activity shall be representative of the water to be utilized as dredge material carriage water and collected only during phase 2 of the project. Ponding area samples shall be obtained at the outlet weir when outflow is present. If there is no outflow from the ponding area a sample is not required. In situ measurements of DO, pH, specific conductance, and water temperature will be obtained during sample collection. Standard sampling and laboratory protocol is required for the surface water samples. Surface water samples will be analyzed as whole water samples (no filtration). During the first sampling trip the monitoring well depths will be measured to verify the integrity of the wells. **Depth to water level** shall be measured at each **monitoring well** during each sampling trip. Water levels are not required for the residential wells. Water depth shall be measured accurately to the nearest 0.1 foot prior to purging the well according to the procedure outlined in the sampling protocol. The measurement shall be taken from the top of the 2-inch riser pipe to the water surface. ## 5. REQUIREMENTS – Parameters, Methods, and Detection Limits The contractor will analyze each sample according to Tables 1 and 2 as soon as possible after collection and within the recommended holding times for the parameters analyzed. Methods listed in Table 1 will be used. Alternative procedures must be identified and justified in the offeror's proposal and approved by the Corps prior to contract award. Sample analyses between the laboratories practical quantiation limit (PQL) but above the method detection limit (MDL) will be reported and qualified as "estimated". All supporting QA/QC documentation shall be included with the test results. Detection limits listed in Table 1 shall be obtained. Specific description of the analytical methods used and the detection limits attained for each parameter shall be reported with the analytical results. The Contractor shall provide chain of custody sheets to be filled out by the sample collection teams and laboratory personnel. At a minimum, the custody sheets shall indicate project name, sample location, field observations, type of sampler used, field id number, date and time of sample, sample depth, sampling team, lab number, date received by the lab, date analyzed by the lab, and the parameters to be analyzed with their measurement units. ## 6. QUALITY ASSURANCE/CONTROL PROTOCOL ## General Any laboratory performing analytical work must be state certified (Minnesota certification or reciprocity with the Minnesota certification program) for the parameters to be analyzed. Potential Contractors may be subject to a Corps laboratory audit if one has not been completed in the last 2 years. Potential Contractors that would do any of the analytical work will be required to have a comprehensive quality assurance/quality control program, including documentation following the procedures of EPA (1979). Normal chain of custody and other quality control procedures will be followed by the Contractor. These procedures are outlined in the sampling protocol. The procedures will conduct standard quality control procedures and report all quality control measures with the analytical results. The Corps of Engineers requires that a single parameter or group of parameters for all of the samples will be analyzed by the Contractor in a single analytical session. The quality assurance program and any analysis associated with it are considered part of the of the normal procedures and is not an extra cost of the contract. ## <u>Project Specific – Sample Collection</u> The Contractor shall provide a quality assurance/quality control protocol for sample collection similar to that provided in the Sampling Protocol. It shall describe sampling procedures and sampling equipment including pumps, bailers, and sample containers. The protocol shall also describe well purging procedures which will be done for each sampling event. Specific procedures to be used for sampling the private wells shall also be described. ## Project Specific – Analytical Work The Contractor's quality assurance plan must include, as a minimum, the following elements: - a. SAMPLE HANDLING, CUSTODY, PRESERVATION, AND HOLDING TME The lab shall immediately notify the Government representative of any problems concerning the sample handling, preservation, or holding times for any of the samples received. The Government representative will then make a determination to continue/discontinue analysis of the parameter and sample in question. Any samples not previously arranged for in the schedule or by the Government representative shall be coordinated with the Government representative to determine a course of action. - b. CALIBRATION USACE requires reported analytes to be bracketed by an established calibration curve. Any analytes reported below the established calibration curve and above the minimum detection limit listed in Table 2 is required to be flagged as estimated. To avoid qualifications based on this requirement, the laboratory shall be required to analyze an additional low level standard at or near the minimum required detection limit or project PQL. Low level calibration points above the minimum required detection limits listed in Table 2 must be approved by the Government representative prior to contract award. In addition, target analytes detected above the upper calibration standard shall be diluted and run again. If for some reason this is not possible the original value shall be reported as estimated. Problems concerning achieving the PQL shall be immediately reported to the Corps representative. c. PRECISION – Replicate Samples – The Contractor shall conduct replicate analyses on each parameter for a minimum of 10% of the water samples analyzed. The contractor will compute the relative percent difference (RPD) using equation 1 and report it with the data. If sufficient replicates are taken from a particular matrix (minimum of 8) precision may be estimated as the relative standard deviation (RSD) or Coefficient of variation (CV). Samples selected for replicate analysis will be distributed equally among the different types of samples encountered. Equation 1 RPD = [(|X1-X2|)/((X1+X2)/2)]*100 - d. REAGENT OR METHOD BLANKS The Contractor shall run a minimum of one reagent blank every time samples are analyzed. The reagent blank is to be interspersed with the regular samples; it is not to be analyzed separately. Data for each reagent blank will be reported along with other quality control data for any given analysis. - e. SPIKED SAMPLES For each parameter possible, at least one sample will be spiked with a known concentration and analyzed during normal analytical procedure. Percent recovery will than be computed and reported with the rest of the data. - f. BLIND SAMPLES The contractor may be required to analyze a blind sample for each parameter using normal analytical procedures and shall report the results for evaluation. Blind samples will constitute less than 10% of the total sample analysis. - g. UNINTERRUPTED PARAMETER ANALYSIS The Corps requires that a single parameter or set of parameters for a group of samples be analyzed by the Contractor during the same analytical session. All analyses for parameters in samples, reagent blanks, and blind samples will be conducted during the same analytical session. To clarify: once the instrument or procedure is set and running for a given parameter or set of parameters, all samples and their associated controls will be run. The instrument or procedure will not be stopped, except for an
emergency, until all analyses for that parameter are completed on all samples. If the analytical sequence is interrupted or delayed, upon resumption all blanks, spiked samples, and the remaining unknowns will be run. - h. SAMPLE STORAGE The Contractor must state the maximum storage time that will occur between sample collection and analysis. - i. PERFORMANCE CRITERIA The Corps expects the following performance for OA/OC. Replicate samples using the relative percent difference (RPD) Plus/minus 10% for values >5 X detection limit (DL) Plus/Minus DL for values < 5 X DL Method Blanks The concentration of all target analytes in the blank shall be below the method detection limit (MDL) or less than 5% of the measured concentration in the sample. If the blank does not meet the acceptance criteria, the source of contamination shall be investigated and appropriate corrective action taken and documented. Investigation includes an evaluation of the data to determine the effect and extent of the contamination on the sample results. Corrective actions may include reanalysis of the blank and/or repreparation of the blank and all associated samples at no expense to the Government. Sample results shall not be corrected for blank contamination. ## Spiked Samples Acceptable accuracy on spiked sample analyses is +/- 2 standard deviations of the mean value. If more than 5% of the of spiked sample analyses exceed +/- 2 standard deviations of the mean value, the Corps may request that quality control be checked or may order another laboratory inspection. In addition, if spiked sample analyses exceed +/- 3 standard deviations, the data for the particular set of samples will be rejected by the Corps. The Contractor will be required to identify and correct the analytical problem and rerun the analysis, including sample digestion, at the Contractor's expense. The Corps expects the coefficient of variation on replicate analyses to be less than 10% for most parameters. ## Blind Samples Blind sample results will be compared to the certified known value. If the contractor's performance is unsatisfactory, the Corps will not accept the analytical data until the contractor demonstrates acceptable performance. Acceptable performance on blind samples follows the limits stated for drinking water analysis in the SDWA. The cost of these QA/QC procedures will be included in the per samples bid price (the replicate, spike, and blank samples will not be a separate payment item). ## 7. PRODUCTS The Contractor will provide a final written report (Sampling and Analysis report) including the analytical results, specific description of analytical methods, description of field and laboratory quality control and quality assurance measures, description of any unusual observations about the tests, and any other relevant information. The Contractor shall also provide the analytical results and notes on unusual observations on a 3.5-inch diskette using an EXCEL spreadsheet. The Contractor shall retain any remaining samples until the products have been approved by the Corps in case additional analyses are requested. Minimum data reporting elements include the following: - a. field sample identification number, - b. laboratory sample number, - c. date of sample(s) collection, - d. date of sample(s) extraction/digestion/analysis, - e. batch number(s), - f. dilution factors, - g. analysis parameter(s), - h. analytical method, - i. parameter value or result, - j. concentration units, - k. reporting and minimum detection limits, - 1. all data qualifiers assigned and any special problems associated with an analysis, - m. sample description including preservation, - n. final chain of custody sheets, - o. and all supporting QA/QC data.** ** QA/QC data shall include calibration data including initial calibration curve data and continuing calibration verification data including standards and blanks and acceptance ranges. All method blanks, laboratory control samples, duplicates, spikes, and other method specific QC samples which may have been run, even on samples other than this project, which were run. Data must clearly indicate which batch data refers to it. ## 8. COMPLETION AND DELIVERY The Contractor shall complete the analyses and deliver the results for each sampling trip to the Corps of Engineers within 30 working days after the samples are collected by the Contractor on-site. The results of in situ measurements made at the wells (pH, water temperature, water level, specific conductance) shall be provided by mail or fax to Mr. Jim Noren of the Corps of Engineers within 2 days of sample collection. Mailing address, fax, and phone number for Mr. Noren are as follows: Corps of Engineers – St. Paul District 190 East 5th Street St. Paul, Mn. 55101-1638 Attn: ED-H Jim Noren Fax 651-290-5841 Phone 651-290-5626 The final (Sampling and Analysis) report will be delivered to the above address 50 days after the final post project sample has been collected. ## TABLE 1 – WATER ANALYSIS | WA | | <u>E I – WATER ANA.</u>
ESTING AND REPO | ORTING PROTOCO | OL, | |--|--------------------|--|---|---------------------------------| | PARAMETER | TESTING
METHOD | CITATION | TESTING
METHOD OR
PROJECT
PQL* | APPROX.
NUMBER OF
SAMPLES | | Alkalinity | EPA 310.1 or 310.2 | (MCAWW)
(EPA/600/4-
79/020) | 10 mg/l as
CaCO ₃ | 96 | | Hardness | EPA 130.1 or 130.2 | (MCAWW)
(EPA/600/4-
79/020) | 10 mg/l as
CaCO ₃ | 96 | | Nitrate+Nitrite
Nitrogen | EPA 353.1 or 353.3 | (MCAWW)
(EPA/600/4-
79/020) | 0.1 mg/l | 96 | | Nitrite Nitrogen | EPA 354.1 | (MCAWW)
(EPA/600/4-
79/020) | 0.1 mg/l | 96 | | Nitrate Nitrogen | CALC. | , | 1 ug/1 | 96 | | Arsenic | EPA 206.2 | (MCAWW)
(EPA/600/4-
79/020) | 0.1 ug/l | 96 | | Cadmium | EPA 213.2 | (MCAWW)
(EPA/600/4-
79/020) | 1 ug/l | 96 | | Chromium | EPA 218.2 | (MCAWW)
(EPA/600/4-
79/020) | 1 ug/l | 96 | | Copper | EPA 220.2 | (MCAWW)
(EPA/600/4-
79/020) | 1 ug/l | 96 | | Lead | EPA 239.2 | (MCAWW)
(EPA/600/4-
79/020) | 1 ug/l | 96 | | Nickel | EPA 249.2 | (MCAWW)
(EPA/600/4-
79/020) | 1 ug/l | 96 | | Zinc | EPA 289.2 | (MCAWW)
(EPA/600/4-
79/020) | 1 ug/l | 96 | | Iron | EPA 236.2 | (MCAWW)
(EPA/600/4-
79/020) | 1 ug/l | 96 | | Manganese | EPA 243.2 | (MCAWW)
(EPA/600/4-
79/020) | 1 ug/l | 96 | | PCB's and CHLORINATE D PESTICIDES** | | | | | | Total PCB's
(Arochlors 1016,
1221, 1232,
1242, 1248,
1254, 1260) | SW-846
8082 | SW-846 Update
IVB | 2 ug/l | 12 | | Aldrin | SW-846
8081 | SW-846 Update
IVB | 0.04 ug/l | 12 | |---------------------------|----------------|-----------------------------------|---------------|----------------| | Alpha BHC | SW-846
8081 | SW-846 Update
IVB | 0.03 ug/l | 12 | | Beta BHC | SW-846
8081 | SW-846 Update
IVB | 0.06 ug/l | 12 | | Delta BHC | SW-846
8081 | SW-846 Update
IVB | 0.09 ug/l | 12 | | Gamma BHC (Lindane) | SW-846
8081 | SW-846 Update
IVB | 0.04 ug/l | 12 | | Heptachlor | SW-846
8081 | SW-846 Update
IVB | 0.03 ug/l | 12 | | Heptachlor
Epoxide | SW-846
8081 | SW-846 Update
IVB | 0.83 ug/l | 12 | | 4,4 DDD | SW-846
8081 | SW-846 Update
IVB | 0.11 ug/l | 12 | | 4,4 DDE | SW-846
8081 | SW-846 Update
IVB | 0.04 ug/l | 12 | | 4,4 DDT | SW-846
8081 | SW-846 Update
IVB | 0.12 ug/l | 12 | | Dieldrin | SW-846
8081 | SW-846 Update
IVB | 0.02 ug/l | 12 | | Endrin | SW-846
8081 | SW-846 Update
IVB | 0.06 ug/l | 12 | | Chlordane | SW-846
8081 | SW-846 Update
IVB | 0.14 ug/l | 12 | | Methoxychlor | SW-846
8081 | SW-846 Update
IVB | 0.5 ug/l | 12 | | Endosulfan I | SW-846
8081 | SW-846 Update
IVB | 0.14 ug/l | 12 | | Endosulfan II | SW-846
8081 | SW-846 Update
IVB | 0.04 ug/l | 12 | | Endosulfan
sulfate | SW-846
8081 | SW-846 Update
IVB | 0.66 ug/l | 12 | | Endrin Aldehyde | SW-846
8081 | SW-846 Update
IVB | 0.23 ug/l | 12 | | Toxaphene | SW-846
8081 | SW-846 Update
IVB | 2 ug/l | 12 | | FIELD
MEASUREMEN
TS | | | | | | РН | EPA 150.1 | (MCAWW)
(EPA/600/4-
79/020) | 0.1 st. units | Site dependent | | Temperature | EPA 170.1 | (MCAWW)
(EPA/600/4-
79/020) | 0.1 deg. C | Site dependent | | Specific Conductance | EPA 120.1 | (MCAWW)
(EPA/600/4-
79/020) | 1 us/cm | Site dependent | |----------------------|-----------|-----------------------------------|----------|----------------| | Dissolved
Oxygen | EPA 360.1 | (MCAWW)
(EPA/600/4-
79/020) | 0.1 mg/l | Site dependent | | Turbidity | EPA 180.1 | (EPA/600/R-
93/100) | 1 ntu | Site dependent | ^{*} Detection limits refer to final analyte concentrations, including back calculations, and do not refer to the basic instrument detection limits. All detection limits are minimum acceptable levels. ^{**} Florosil column cleanup, method 3620, followed by sulfur cleanup, method 3660, may be required to remove interferences. ## TABLE 2 – SAMPLING SCHEDULE | SCHEDULE | P | hase 1 | 1 | | hase 2 | 2 (Tim | e from g in day | onset | of | con | nse 3 (ann pletion lging-d | n of | |-------------------------------|---|--------|------|------|--------|--------|-----------------|-------|----|---------|----------------------------|------| | PARAMETER
S | 1 | 2 | 3 | 3 | 17 | 31 | 45 | 59 | 73 | 30 | 60 | 90 | | | | | MO | NITO | RINC | WEL | LS (2) | | | | | | | Basic Parameters ¹ | X | X | X | X | X | X | X | X | X | X | X | X | | Nit., Alk.,
Hardness | X | X | X | X | X | X | X | X | X | X | X | X | | Metals | X | X | X | X | X | X | X | X | X | X | X | X | | PCB's,
Pesticides | | | | | | | | | | | | | | | | Ş | STAI | NLES | S STI | EEL W | ELL (| 1) | | | | | | Basic Parameters ¹ | X | X | X | X | X | X | X | X | X | X | X | X | | Nit., Alk.,
Hardness | X | X | X | X |
X | X | X | X | X | X | X | X | | Metals | X | X | X | X | X | X | X | X | X | X | X | X | | PCB's, Pesticides | X | X | X | X | X | X | X | X | X | X | X | X | | | | | RES | IDEN | ITIAI | WEL | LS (4) | | | | U | | | Basic Parameters ¹ | X | X | X | X | X | X | X | X | X | X | X | X | | Nit., Alk.,
Hardness | X | X | X | X | X | X | X | X | X | X | X | X | | Metals | X | X | X | X | X | X | X | X | X | X | X | X | | PCB's, Pesticides | | | | | | | | | | | | | | | | RI | VER | AND | CAR | RIAGI | E WAT | ΓER | | | | | | Basic | | | | v | v | v | v | v | X | | | | | Parameters ¹ | | | | X | X | X | X | X | | | | | | Nit., Alk., | | | | X | X | X | X | X | X | | | | | Hardness | | | | | | | | | | | | | | Metals | | | | X | X | X | X | X | X | | | | | PCB's, | | | | | | | | | | | | | | Pesticides | | | | | . ~ | | nce nH d | . , , | | 1. 1:1: | | | ^{1 –} Basic parameters are water temperature, specific conductance, pH, dissolved oxygen, and turbidity. FIGURE 1 – APPROXIMATE WELL LOCATIONS Sampling Protocol Groundwater Monitoring For HREP Stage 2 Dredged Material Placement ## SAMPLING PROTOCOL FOR HREP STAGE 2 GROUND WATER MONITORING WELLS | 1.0 INTRODUCTION | 3 | |--|-----| | 2.0 ADVANCE PREPARATION FOR SAMPLING | | | 2.1 Selection Of Analytical Parameters | | | 2.2 Detection Limits | | | 2.3 Quality Assurance For Field Procedures | 3 | | 2.4 Sampling Containers And Preservatives | | | 2.5 Purging And Sampling Equipment | | | 2.6 Decontamination, Storage And Transport Of Equipment | | | 2.7 Selection Of Sample Collection Techniques | | | 2.8 Order Of Sampling | | | 3.0 PRELIMINARY FIELD WORK | 6 | | 3.1 Field Inspections And Field Decisions | | | 3.2 Detection Of Immiscible Layers | | | 3.3 Water-Level Measurements | | | 3.4 Field Water-Quality Measurements | 7 | | Specific Conductance | | | Temperature | | | pH | | | Dissolved Oxygen | | | Turbidity | | | 3.5 Well Purging And Stabilization | | | Monitoring Wells | | | Residential Wells | | | Surface Water Samples | | | 4.0 SAMPLE COLLECTION | .11 | | 4.1 Pump Setting | 11 | | 4.2 Sample Filtration | 12 | | 4.3 Filling Sample Containers | | | Nitrate | | | Trace Metals | | | Monitoring Wells | | | Residential Wells | | | Surface Water | | | General | | | Non-Volatile Organics | | | 4.4 Field Blanks, Replicate And Split Samples | | | Field Blank Samples | | | Field Replicate Samples | 15 | | Field Split Samples | | | 5.0 DOCUMENTATION OF SAMPLING EVENT | | | 5.1 Sample Identification | 16 | | 5.2 Chain Of Custody | | | Field Chain of Custody Documentation | 17 | | Chain of Custody During Shipping and Transfer of Samples | | | 5.3 Field Sampling Log | 17 | | 5.4 Exceptions To Sampling Protocol | 18 | | 5.5 Field Conditions | | | 6.0 SAMPLE PRESERVATION, HANDLING AND TRANSPORT | .18 | | 6.1 Sample Preservation | 18 | | 6.2 Sample Handling And Transport | 10 | ## SAMPLING PROTOCOL FOR POOL 10 – HREP STAGE 2 GROUND WATER WELLS ## 1.0 INTRODUCTION This document defines procedures to be used for ground water quality measurements and for collecting and handling ground water and surface water samples obtained for the Ambrough Slough Dredged Material Placement Project in Crawford County near Prairie du Chien, Wisconsin. Deviations from these procedures may be required by unforeseen circumstances that develop during the program. Such deviations will be approved by the Corps of Engineers representative in advance of sampling. When approvals cannot be obtained in advance, deviations from the established procedures will be evaluated as soon as possible after sampling and needs for re-sampling will be evaluated. Deviations from the specified procedures will be clearly noted on the sampling information form (SIF) used for the sampling of each well and will be included in the Sampling and Analysis Report (final) as described below. ## 2.0 ADVANCE PREPARATION FOR SAMPLING Selection of analytical parameters, field measurement and sampling techniques, equipment selection and other quality assurance measures are based on the sampling objectives presented in the Scope of Work. ## 2.1 Selection Of Analytical Parameters Analytical parameters were selected based on regulatory requirements and a review of site history. Samples will be collected and analyzed for the parameters in **Table 1** at 4 residential wells, 3 monitoring wells and 2 surface water sites according to the schedule in **Table 2**. ## 2.2 Detection Limits Minimum detection levels are shown in **Table 1**. In all cases, these detection limits are at or below applicable action levels. ## 2.3 Quality Assurance For Field Procedures Particular care will be exercised to avoid the following common ways in which cross contamination or background contamination may compromise ground water samples: - improper storage or transportation of equipment - contaminating the equipment or sample bottles on site by setting them on or near potential contamination sources such as uncovered ground, a contaminated vehicle, or vehicle exhaust - handling bottles or equipment with dirty hands or gloves - inadequate cleaning of well purging or sampling devices Special care will be exercised to prevent cross-contamination of sampling equipment, sampling bottles, or anything else that could potentially compromise the integrity of samples. Field methods quality assurance verification procedures are described in Section 4.4, "Field Blanks, Replicates and Split Samples". Field personnel will work under the assumption that contamination exists in land surface soil and vegetation near sampling points, wash water, etc. Therefore, exposure to these media will be minimized by taking at least the following precautions: - minimizing the amount of rinse water left on washed materials - minimizing the time sampling containers are exposed to airborne dust or volatile contaminants in ambient air - placing equipment on clean, ground-covering materials instead of on the land surface Clean gloves made of appropriately inert material will be worn by all field crew. Gloves will be kept clean while handling sampling-related materials. The gloves will be replaced by a new pair when soiled and between each sampling site. ## 2.4 Sampling Containers And Preservatives Laboratory-supplied sampling containers and preservatives to be used for samples from all wells are shown in Table 3. The Contractor is responsible for ensuring that all sample collection containers are appropriate for the analysis and detection levels required. Chemical preservatives will be added in the laboratory before samples are collected. ## 2.5 Purging And Sampling Equipment The contractor shall **provide a list of the well purging and sampling equipment** to be used during the project. The list shall include the following: - two-inch nominal diameter stainless steel positive displacement submersible bladder or Grundfos or similar pumps: [provide manufacturer name, model name/number and optional equipment used] - pump discharge lines: [new, decontaminated] Teflon - regulators and compressed nitrogen tanks other equipment such as bailers, rope, other pumps, generators, air compressors, etc. The contractor shall provide the government representative equipment descriptions and specification details as well as maintenance schedules prior to initiating field work. ## 2.6 Decontamination, Storage And Transport Of Equipment <u>New pump tubing</u> will be used the first time each well is sampled. Tubing will then be dedicated to a single well for subsequent sampling events. Between sampling events, the tubing will be stored in a sealed, chemically inert plastic bag. The bag will be labeled with the well name and stored in a secure, clean location. The Contractor will provide a plan for the decontamination of pump bladders along with the proposal. The Contractor may choose to discard bladders after use at each well; dedicate, label, and store pump bladders in the same manner as tubing for each well; or decontaminate the bladder by circulating decontamination fluids through the pump as described below. All sampling-related equipment including filtration devices, personal protection gear and materials coming into contact with actual sampling equipment or with sampling personnel will be decontaminated. If using sampling pumps and tubing that are permanently installed or dedicated to individual wells, they are exempt from field decontamination. Decontamination will be performed before, between and after working at each sampling point. All equipment will be handled in a manner that will minimize cross-contamination between wells and avoid introducing surface or ambient air contamination into a well. Equipment used during purging or sampling will be thoroughly cleaned prior to use in each individual well even when the wells are located close to each other. After cleaning, the equipment will be visibly inspected to detect sticky residues or other substances that may survive normal cleaning. If inspection reveals that decontamination was insufficient, additional measures will be implemented as needed and documented. Decontamination procedures will be specific to the contractors sampling plan. The Contractor is required to provide decontamination schedule and procedures with the proposal. In general equipment will be decontaminated in the following manner: - A. Equipment that does not contact sample water or the inside of the well - 1. clean (inside and out where possible) with a hot water pressure washer filled with clean water - 2. clean (inside and out) with an Alconox/clean-water solution applied with a scrub brush where practical - 3. rinse with clean control water - 4. inspect for remaining particles or surface film and repeat cleaning and rinse procedures if necessary - B. The following steps shall be used for equipment that contacts sample water or the inside of the well: - 1. clean (inside and out where possible) with an Alconox/clean-water solution
applied with a scrub -brush made of inert materials - 2. rinse with clean control water - 3. inspect for remaining particles or surface film and repeat cleaning and rinse procedures if necessary - 4. rinse with an inorganic desorbing agent - 5 rinse with clean control water - 6. rinse thoroughly with laboratory controlled deionized water - 7. shake off remaining water and allow to air dry The internal surfaces of pumps and tubing that cannot be adequately cleaned by the above methods alone will also be cleaned by circulating decontamination fluids through them. The fluids will be circulated through this equipment in the order shown above under "B". Special care will be exercised to ensure that the "rinse" fluids will be circulated in sufficient quantities to completely flush out contaminants, detergents and desorbing agents. When transporting or storing equipment after cleaning, the equipment will be protected in a manner that minimizes the potential for contamination. Sampling pumps will be totally enclosed in a clean case capped at both ends. If the case is used to transport used pumps, the case will undergo the same decontamination process as the pump before being used again. The tubing will be placed in a clean, inert plastic bag. ## 2.7 Selection Of Sample Collection Techniques Sample collection techniques as detailed in this document have been tailored to the goals of this sampling event and the individual characteristics of this site. The techniques described herein are scientifically sound and widely used in this industry. ## 2.8 Order Of Sampling Wells will be sampled in a logical order. All wells of one type will be sampled before the next set or well type is sampled. Example: All monitoring wells will be sampled before the residential wells are sampled. ## 3.0 PRELIMINARY FIELD WORK The following procedures will be implemented to ensure representativeness of samples collected by methods in Section 4, "Sample Collection". ## 3.1 Field Inspections And Field Decisions Before purging or sampling, all wells will be inspected to verify that the annular seal is intact at the surface. The well depths at each well will be measured on the first sampling visit to verify the integrity of the wells. Well depths will be measured with the same instrument used to measure the water level, however, a weight may be attached to the measurement device for sounding the well bottom. This sounding device will also be decontaminated in the same manner as specified for making water-level measurements (Section 3.3). The well depth will be recorded to the nearest 0. 1 feet prior to purging the well. In addition, the condition of any relevant facts regarding the general physical condition of the well, the surrounding soil and vegetation or other objects in the immediate vicinity of the well will be inspected. Any unusual condition including the presence of wind-blown dust or odor in the ambient air will be recorded on the attached Sampling Information Form (SIF). Details will be noted in the field sampling log and summarized in the Sampling and Analysis report. More specifically, any hint of odor or free product in the well will be noted on the SIF and in the Sampling and Analysis Report. If any condition that may interfere with obtaining representative analytical results is discovered, the condition will be rectified before sampling of the dissolved phase of well water proceeds. The decision and exact change of procedure will be recorded on the SIF and reported in the Sampling and Analysis Report in a manner that clearly indicates which data sets may have been affected by the change in protocol. ## 3.2 Detection Of Immiscible Layers The Government representative shall be notified as soon as possible if immiscible layers of contaminants (free product "floaters" or "sinkers") are suspected or seen or if odors or an oil sheen are observed in the well or sampling equipment. Any detection of an immiscible shall be documented in detail. ## 3.3 Water-Level Measurements Water level measurements are required for the monitoring wells during each sampling round. Water level measurements are not required for the residential wells. Prior to any well evacuation or sampling, the initial static water level of the monitoring well will be measured and recorded. The measurements shall be taken from the top of the 2-inch riser pipe to the water level for each monitoring well. This is done to facilitate selection of the proper pump intake depths for purging and sampling and calculation of the ground water flow direction. During initial static water level measurement, a minimum of two water level measurements will be made at each well. If there is poor agreement between the first and second static water level measurements (i.e., a difference of more than 0.05 feet), data will be re-evaluated for measurement errors, unsuspected pumping that may be causing transient changes in gradient, etc. If the disagreement cannot be rectified, a third static water level measurement will be made at each questionable sampling point to assess the true water level, verify non-steady state conditions, etc. Water level probes will be decontaminated by triple-rinsing with clean water and drying with clean Kim Wipes or equivalent tissue before use in each well. Water levels will be measured with an electric water-level sensor probe that has been calibrated within the last month and recorded to the nearest 0. 1 foot. The electric water-level sensor probe, will be lowered down the well until the probe indicates contact with the water surface. The depth-to-water will be referenced from the top of the 2-inch riser pipe on each of the monitoring wells. When reporting absolute water level elevation, this measurement will be converted to water level elevation (MSL) from the surveyed elevation of the top of riser pipe. The attached water-level data form will be completed for all wells where water level measurements are made. Data will be entered in all applicable columns on this form. ## 3.4 Field Water-Quality Measurements Specific conductance, pH, temperature, turbidity and dissolved oxygen will be measured in the field immediately before sample collection. <u>Calibration information and all measurements will be recorded on the attached Well Purging - Field Water-Quality Measurements Form</u>. Measurement conditions and the steady-state value for each field water-quality parameter will also be noted on the SIF. All measurements except for turbidity, unless measured in situ, will be taken within a closed flow cell designed to allow measurement of these parameters while minimizing changes in temperature, pressure, and dissolved gases from the in situ aquifer environment. The flow cell requires the following characteristics: - Air tight fittings for installation of all probes. - Intake is connected directly to the pump discharge line or tap discharge line. - A discharge line at least 3 feet long that is connected to the flow cell with an air tight connection. - A maximum volume of no greater than five times the per minute volumetric rate of inflow to the cell to maintain measurement sensitivity to temporal changes in water quality. - A minimum volume of 500 ml to provide enough thermal mass to minimize external temperature effects. - The flow cell will be shielded from strong winds and on hot days it will be shielded from direct sunlight. The operation of the probes will be as follows: - 1. The flow of ground water through the flow cell will be maintained as continuous and steady as practical throughout the measurement period. - 2. Discharge velocities through the flow cell are kept low to prevent streaming potential problems with probes. - 3. All probes will be fully immersed without touching the sides of the air tight, non-metallic flow cell. - 4. All probes will be allowed to equilibrate with fresh well water for five minutes before recording measurements. Specific procedural details for measurement of individual field water quality parameters are specified below. General care, maintenance, calibration procedures, and operation of each measurement device will also follow manufacturers specifications as detailed in the instruction/owner's manual for each device. These procedures shall be documented and provided to the Government representative for inclusion in the final report. Where there are differences in procedures as defined in this document compared to manuals accompanying measurement devices, the more stringent procedures shall be documented and followed. ## **Specific Conductance** The conductivity meter will be calibrated each day using a traceable standard potassium chloride reference solution before taking measurements at the first site. Calibration shall be near the range of suspected readings. The expected range of specific conductance for this study is 200 to 600 us/cm. Linearity of the probe should be checked with a second standard. A post calibration will be completed following the days sampling. Records of the pre-and post calibrations shall be included with the daily data. The conductivity cell will be inspected to be sure it is in good condition with no chips in the coating. The conductivity standard calibration solution will be labeled to show the date of preparation, check-marked to show the number of times used and replaced at regular intervals of no more than three months or 10 uses, which ever comes first. The probe will be fully immersed but will not be allowed to touch the non-metallic container. This reading will be compared with the chart value for the standard reference solution at the temperature of the solution. All readings must be corrected (temperature) to show the specific conductance (SC). It should be noted if the instrument electronically corrects for temperature. If the instrument does not correct for temperature the specific conductance (electrical conductance (EC) corrected to 25 degrees Celsius) will be calculated from the EC and the
water temperature. The SC value will be taken from the conversion table provided in the EC meter instruction manual and recorded. The SC (not EC) will be used to determine when stabilization is reached. Both the electrical conductivity (EC) and temperature corrected specific conductance (SC) shall be recorded in micro-Mhos/cm, as well as the sample temperature in degrees Celsius. All readings shall be recorded on the appropriate field forms in micro-Mhos/cm to three significant digits. ## **Temperature** At the beginning of each day of field operations, the temperature probe will be inspected. Prior to initialization, at the midpoint, and at the completion of the sampling program the temperature probe shall be placed in a well mixed water bath and compared to a mercury thermometer capable of being read to the nearest 0.1 degrees Celsius to assure it is in good operating condition. During monitoring the measured ground water temperature will be recorded to the nearest 0.1 degrees Celsius. ## pН Personnel using pH measuring equipment will <u>read the manufacturer's instruction manual carefully</u> before recording any measurements. Special care will be taken to protect the fragile glass bulb on the end of the pH electrode. Careful handling includes all steps from the manner in which the cap is taken off the electrode and includes keeping the electrode tip moist between sampling points. Before sampling is begun for the day, the pH meter will be calibrated by a two-point calibration method. Periodic checks using a single buffer during the day are recommended. The single buffer calibration will normally be accomplished using a pH = 7 buffer for natural waters. At the completion of the days monitoring the pH meter will be post calibrated using the two-point calibration method. For the two-point calibration method, two buffers with pH values representative of the range of values expected in the field will be used to check the slope (span) of the meter. Typically, a pair of buffers with pH = 7 and 10 will be used for the two-point calibration. Because the pH of buffer solutions vary with temperature, the actual pH (e.g., pH = 7.07 vs. 7.00) of the buffer solution at its current temperature will be used for calibration. The actual pH of the buffer at its temperature of measurement will be determined from manufacturer documentation accompanying the buffer. The exact pH of the buffer solutions at 2- to 5-degree intervals for the range of buffer temperatures expected will be recorded in indelible ink on the buffer solution bottles. Only fresh buffer solutions will be used. Care will be taken not to dilute or contaminate the buffer solutions. Buffer solutions will be discarded after the tenth calibration or four weeks after the first use of the solution, whichever occurs first. pH meter calibration will be performed as follows: - 1. The pH meter's temperature compensation control will be set to the current temperature of the buffer solution. - 2. The pH meter electrode will be rinsed with distilled water and the excess water will be shaken off. - 3. The electrode will then be stirred and left immersed in the buffer container until it stabilizes. - 4. While immersed in the first buffer solution, the calibration control will be adjusted until the display matches the known pH of the buffer. - 5. Steps 2 and 3 will then be repeated to prepare for the second buffer. 6. Step 4 will be repeated for the second buffer. - 7. If measurement of the second buffer does not give a satisfactory reading the slope control will be adjusted. - 8. Steps 2-7 will be repeated until both buffer solutions yield satisfactory readings (within approximately 0.02 pH units of the actual value on both ends of the measured scale). - 9. In the field, step 2 will be repeated at each well before measuring the pH of well water. After allowing the pH probe to equilibrate with a continuously replenished supply of fresh aquifer water for a minimum of five minutes, the first pH measurement will be recorded. ## **Dissolved Oxygen** Personnel using dissolved oxygen measuring equipment will read the manufacturer's instruction manual carefully before making dissolved oxygen measurements. Special care will be taken to store the probe in a humid environment and to otherwise protect the delicate membrane on the end of the probe. The membrane will be replaced every two to four weeks. The dissolved oxygen meter will be calibrated at prior to sampling and at the completion of sampling each day according to manufacturer's specifications. When dissolved oxygen readings less than or equal to approximately 1.0 mg/L are expected, the meter will be calibrated in a mode (if available) that enhances accuracy at low concentrations. The calibration method will be recorded on the Well Purging - Field Water Quality Measurements Form. Measurements will be taken as follows: - 1. The membrane at the tip of the probe will be checked visually to verify that it is in good condition. - 2. A submersible stirring device will be operated adjacent to the membrane during dissolved oxygen measurements if a flow cell is not in use. - 3. After allowing the dissolved oxygen probe to equilibrate with a continuously replenished supply of fresh aquifer water for a minimum of five minutes, the first measurement will be recorded. Readings should appear stable on the display to be considered valid. If non-stable readings are recorded, they will be footnoted when recorded and the non-stable measurement conditions will also be clearly stated in the final Sampling and Analysis Report. Readings will be reported to the nearest hundredth of a mg/L dissolved oxygen. Pre and post calibration data shall be included with the data recorded during the days sampling. ## **Turbidity** Turbidity meter calibration and measurement techniques will follow manufacturer recommendations except where they conflict with statements in this paragraph. Measurements will be made inside a glass or transparent plastic bottle filled directly from well discharge in the same manner as samples are collected. Measurements will be taken immediately after filling the container to minimize bias due to particulate settling. ## 3.5 Well Purging And Stabilization ## **Monitoring Wells** Before a well is sampled for the dissolved phase, it will be evacuated to ensure that samples contain fresh formation water. While the well is being purged, water quality parameters described above in Section 3.4, "Field Water-Quality Measurements", and the quantity of water evacuated will be recorded on the Well Purging - Field Water Quality Measurements Form. A purging rate that will result in a minimum of drawdown while still allowing the well to be purged in a reasonable length of time will be used and recorded on the SIF. However, the maximum purging rate will be 0.5 gallons per minute. There is expected to be no significant drawdown if purged at the 0.5 gallons per minute. Care will be taken to avoid any significant amount of cascading or turbulence in the well. Wells that do not have extremely slow recharge rates will be purged and sampled as described below. Purging will be conducted in a manner that, to the extent practical, removes all the "old" water in the well so it is replaced by fresh ground water from outside the well installation. - 1. The well will be purged by withdrawing water from within two feet of the top of the water column. - 2. Repeated vertical adjustment of the purging equipment intake may be necessary if the water level drops. - 3. Positive displacement submersible bladder or Grundfos or similar type pumps will be used for both purging and sampling. - 4. Sampling will immediately follow purging. - 5. Well evacuation will be continuous between purging and sampling. - 6. The same pump will be used for both purging and sampling at each individual well. - 7. Neither air lift pumps or any other method device that significantly aerates well water or otherwise creates significant turbulence will be used at any time during the purging or sampling of wells. Field water quality parameters will be measured for stabilization after each water-column volume is purged. One water-column volume is defined here as equal to the volume of a cylinder with a height (h) equal to that of the Static Water Column inside the well and a diameter (d) equal to the diameter of the well casing (Volume = $\prod (d/2)^2 h$). The following target criteria for three consecutive measurements (one water-column volume apart) will be used to demonstrate stabilization: - pH +/- 0.04 units temperature - +/- 0. 1 degrees Celsius - specific conductance (temperature corrected EC) +/- 5% - dissolved oxygen +/-0.5 mg/L Samples for laboratory analysis will be collected only after a minimum of three water-column volumes have been purged and stabilization of field water-quality parameters has been demonstrated by meeting the target criteria defined in the preceding paragraph. If field parameters do not stabilize after approximately five water-column volumes, then field staff will check operator procedures, equipment functioning and well construction information for potential problems. In particular, field staff will re-evaluate whether or not water is being withdrawn from the appropriate depth to effectively evacuate the well. If all the checks produce no new insight, a decision might be made to collect samples after five water-column volumes have been purged even if field measurements have not stabilized. Before authorizing the laboratory to analyze samples, the meaningfulness and value of completing laboratory analysis of the sampling suite will be evaluated by reviewing the results of field measurements, well construction data, site hydrogeology, etc. Where such data is presented, it will be clearly documented that stabilization was not achieved; at a minimum, this fact will be reported on the SIF and in the Sampling and Analysis Report. ## **Residential Wells** The residential
wells will be sampled at an exterior tap on residences determined by the Corps. Generally sampling procedure is the same only the volume of water in the system will need to be estimated to ensure three well or system volumes have been pumped before stabilization readings are taken and samples obtained. ## **Surface Water Samples** Surface water samples will be grab samples. Purging is not applicable. ## 4.0 SAMPLE COLLECTION This section describes procedures for setting the sampling pump and collecting ground water samples. Field data for these items will be recorded on the SIF for each sampling point. ## 4.1 Pump Setting The contractor shall use a positive displacement submersible bladder, Grundfos, or similar type pump(s) for sample collection. The Contractor shall identify the pump used for each well by providing its type and model number in all reports. If well recovery is so slow that a satisfactory water column height (for normal pump operation) is not reached in a reasonable amount of time, a zero submergence bladder pump or Teflon bailer will be used for sample collection. The SIF will show what type of pump or bailer was used to sample each well. If any device other than the one described above is used, it will be reported as a protocol exception. Alternative pumps or bailers used must be identified and justified in the Contractors proposal and approved by the Corps prior to contract award. Following purging. the water level will be checked with a clean measurement device. The pump intake will be adjusted, if necessary, so it is set inside the screened interval (if possible)at approximately two feet below the water surface inside the well to collect samples. The water level measurement will be compared to the static water level and the pump intake setting. This comparison will be used to verify that drawdown is minimal at the purge rate and that the pump intake is located approximately two feet below the top of the water column. Note for alternate scenario where static water level is sufficiently above the top of the screen: the sampling pump intake should be set at approximately two feet above the top of the screen and at least two feet below the top of the water column. The same pump will be used for sampling as was used for purging. Pumping will be continuous and sampling will immediately follow purging. If pumping is not continuous it will be noted on the SIF. The sample collection pumping rate will be less than or equal to the purging rate. The <u>purging and sampling rate</u> will be no more than 0.5 gallons per minute. High volume wells may require the use of a "packer" or simultaneous pumping to effectively purge the deep wells. Any final rinse water remaining in any portion of the sampling pump or discharge lines will be completely purged with fresh well water before filling sampling containers. To insure this, at least two tubing-volumes will be purged from discharge lines before sample collection begins. ## **4.2 Sample Filtration** Table 2 identifies which sample containers will be filled with sample water that has been filtered in the field. Sample filtration will be completed as follows: - 1. The filter holder and new filter will be thoroughly pre-rinsed with laboratory-controlled deionized or distilled water before use. - 2. The new filters will be flushed with fresh sample water before collecting samples. - 3. The filter will be connected directly to the well sampling pump discharge line using positive pressure to force the sample through the filter.(if practible) - 4. From the filter, the flow will be routed directly into the sample collection container. - 5. A 0.45 micron pore size filter will be used. - 6. The flow rate will not exceed 0.5 gallons per minute. - 7. Agitation and aeration of the sample will be minimized. - 8. Teflon tubing will be used for the pump and filter discharge lines. ## 4.3 Filling Sample Containers Table 2 summarizes the sample container type, filling method, preservation method and holding time for each analytical parameter set. To clarify and supplement the summary in Table 2, the manner in which containers will be filled is described below in subsections of 4.3. Individually prepared bottles will not be opened until they are to be filled with water samples. Special care will be taken to ensure that the procedures listed below are followed: - 1. The area surrounding the wellhead will be kept as clean as practical to minimize the potential for contamination of samples. - 2. Care will be exercised to minimize the potential for airborne contamination of sample water during collection. If vehicles or generators are left running during sample collection, containers will be filled upwind from engine exhaust sources. If conditions are dusty, an effort will be made to shield the sample collection area from windborne contamination. - 3. A <u>clean and dry sheet</u> of relatively inert plastic shall be <u>placed on the ground surface</u> in the wellhead area. If materials used in the sampling process must be put down, they will be placed on a clean portion of the plastic sheet instead of the ground surface. - 4. A clean pair of gloves will be put on at the onset of sampling activities at each new sampling point. - 5. Sampling personnel will keep their hands as clean as practical and replace gloves if they become soiled while performing sampling activities. - 6. Sampling personnel will not touch the inside of sampling containers, inside of bottle caps or rim of sample containers. If contact occurs, sample containers will be replaced. At the well, <u>bottles will be labeled and chain-of-custody sections will be filled out</u> by the field personnel according to procedures described below in Section 5: "Documentation of Sampling Event". To prevent a mix up with sample bottle identification, no sampling-point specific information such as "well name" will be filled out in advance. Chain of custody information will be completed before leaving the sampling point. Laboratory-prepared bottles will be used to assure quality control. The <u>order of filling bottles</u> with water to be analyzed will be as follows: - 1. major and minor ions - 2. nitrates - 3. trace metals - 4. "miscellaneous" parameters - 5. non-volatile organics Methods for filling sample containers for individual analyses are described below. The sample water discharge point at the end of the <u>tube will be held as close as possible to the sample container</u> without allowing the sample tubing to contact the container. At a minimum, sampling personnel will use their body to shield the sampling container from wind and airborne dust while filling. When strong winds, heavy rain, or dusty conditions are present, additional measures will be implemented to guard against background interference. ## **Nitrate** Sample containers for nitrate analysis will be prepared in advance by the laboratories with H_2SO_4 as a preservative. The containers will be filled approximately 95% full with unfiltered water. Containers will not be rinsed or overfilled at anytime in the field. Samples will be checked with pH paper in the field to verify that the pH has been lowered to less than or equal to pH = 2. ## **Trace Metals** Sample containers for general trace metals analysis will be prepared in advance by the laboratories with HNO_3 as a preservative. This will insure that samples will be acidified as soon as they are collected. Containers will be filled approximately 95% full. Containers will not be rinsed or overfilled at anytime in the field. ## Monitoring Wells Two samples, one filtered and one unfiltered, will be collected for general trace metals analysis. The sample bottles will be clearly labeled as "filtered" and "unfiltered." **Analysis of the filtered samples will be conducted for the monitoring well samples**. All filtrations will use positive pressure through a 0.45 micron filter. Unfiltered (whole) water samples will be placed in cold storage until project completion or until directed by the Corps. ## Residential Wells Unfiltered (whole water) samples will be collected for the residential wells. The whole water samples will be analyzed for the residential wells. ## Surface Water Unfiltered samples will be collected and analyzed for the surface water sites during each monitoring trip. ## General All filtered sample water will be filtered through a 0.45 micron pore size filter unit before filling the laboratory prepared bottle. New filters will be used for each sample. If sample water is too turbid to field filter and a protocol exception has been pre-approved by the Corps of Engineers, it will be collected in a new unacidified container, put on ice, and immediately delivered to the laboratory for filtration and acidification. Unacidified metals sample bottles will be filled completely. Whether filtered or not, samples for metals analysis will be collected in a manner that minimizes turbulence and aeration and then acidified immediately as described above. Plastic containers will be used for sample collection. The acid will be produced/controlled within the applicable QA/QC program to ensure that it is pure enough (e.g., Ultrex or pure acid diluted with triple distilled water) with regards to metals to avoid a false positive analytical result. ## **Non-Volatile Organics** As defined here,"non-volatile organics" (meaning organic compounds that are not highly volatile) include the following sets of parameters: base-neutral/acid extractable organics, phthalate esters, polychlorinated biphenyls (PCB's), phenols, polyaromatic hydrocarbons, chlorinated herbicides, organochlorinated pesticides and PCB's, and organophosphorus pesticides. Sample containers used for non-volatile organics analysis will <u>not be rinsed</u> in the field or allowed to overflow excessively during sample collection. Containers will be filled completely. ## 4.4 Field Blanks, Replicate And Split Samples Sample blanks, will be collected to
detect background or method contamination. Replicate samples and split samples will be collected to evaluate variability in analytical methods. QA/QC samples will be collected at sampling points suspected to have relatively higher levels of contamination to provide meaningful information duplicate sample evaluation. All QA/QC samples will be collected in the same type of container as the corresponding primary samples. All QA/QC samples will be assigned identification aliases on the sample bottle label and on the chain of custody sheet to avoid alerting laboratories that the sample is a blank or replicate sample. The true identity of the QA/QC samples will be recorded in the field sampling log. The collection schedule for QA/QC samples will be as follows: - 1. one field methods (equipment) blank every other sampling trip - 2. at least one replicate set for every ten sets of samples collected - 3. at least one surrogate spike for each ten sets of samples collected For each type of QA/QC sample, containers will be prepared and submitted for the following analyses: - 1. field methods (equipment) blank: trace metals, non-volatile organics - 2. replicates: all analytical parameters - 3. surrogate spikes: all analytical parameters ## Field Blank Samples Field equipment/methods blanks will be collected in the field for trace metals and non-volatile organics. Sample containers used for each blank will be the same as for the actual analysis of sample water for these parameter groups. All containers shall be pre-cleaned within the laboratory's QA/QC program in the same manner as primary sample bottles. The sample blank containers will be filled in the field. Laboratory controlled, organic free water will be used to fill all organic blank samples. Trace metals blanks will be filled with laboratory prepared, triply distilled water. The same preservatives will be added to both the methods blank and the primary samples. An effort should be made to have the blank sample water contact all the interfaces and preservatives that the sample water will contact. ## **Field Replicate Samples** Field replicate samples of actual ground water will be collected and analyzed for the same parameters as the primary samples are analyzed for. Replicate samples will be collected for 10% of the primary samples collected. Replicate samples will be collected by sequentially filling all containers as close together in time as practical with a sampling stream that is as steady and continuous as practical. The sequence number (first, second, etc.) and time filled will be listed in the field notebook. The time that each individual container was filled will be listed on the container and on the Sample Identification - field chain of Custody Record in the same manner as primary samples. One field replicate sample set will be collected for every ten primary sampling sets. ## **Field Split Samples** Field split samples of actual ground water will be collected and analyzed for the same parameters the primary samples are analyzed for. Split samples will be collected for approximately 10% of the primary samples by filling the subsample containers from a single homogeneous sample water at the same time. **Field split samples will be delivered to a laboratory specified by the Corps.** ## 5.0 DOCUMENTATION OF SAMPLING EVENT This sampling <u>protocol includes the use of the attatched forms</u>; they are designed for documentation of field activities and collection of field data. They also provide a means to verify whether or not this protocol was followed during a number of key steps in the ground water sampling event. To fully implement the protocol verification facility of these forms, all entries on both sides of the forms will be completed before leaving the sampling point. This includes filling in all blanks and circling or checking all choices, e.g., "yes" or "no" choices on the following forms: - 1. Water-level Data Form - 2. Well Purging/Field Water Quality Measurements Form - 3. Ground Water Sampling Information Form - 4. Sample Identification Field Chain of Custody Record (SI-FCCR) The following exceptions are allowed on all forms: - Columns with blank headings don't require an entry. - Ditto marks or continuation arrows may be used in any column to indicate "same as above"; N/A or a horizontal line may be used to indicate "not applicable." - "Comment" fields may be filled in with a horizontal line to imply that nothing that could impact data or the validity of data was observed. - The Project Name/# and Organization performing the work can be entered in advance. - The IGWIS fields "Facility ID" and Station ID" can be filled out after leaving the sampling point. Other exceptions include the following: - Forms 1,2, and 4: only <u>rows</u> needed to document required tests, measurements, calibration, etc., will be filled. - Form 2: Only include field water quality parameters called for in the sampling protocol - Form 4 (SI-FCCR): the entire header block (upper one-sixth of the form) may be filled out in advance except for the "hazardous materials expected" field. ## **5.1** Sample Identification The attached <u>Sample Identification - Field Chain of Custody Record</u> (SI-FCCR) or a similar form will be completed as described above in Section 5.0, "Documentation of Sampling Event". All primary and QA/QC samples collected at a given sampling point over a discrete interval of time will be assigned the same sample event ID #. This number is used to link that set of containers together and associate them with all of the information contained on the SIF The SI-FCCR will be at least a two-part (carbonless copy) form. When samples are transferred to an analytical laboratory, the laboratory will receive only the laboratory part(s) of the form. Information from the "Sampling Point", "Location", "Field Sample Event ID #", "Sample Type" and "Time" columns does not transfer to the laboratory part(s) of the form and, therefore, will not be disclosed to the laboratory. Each <u>Sample Identification - Field Chain of Custody Record (SI-FCCR)</u> will contain a unique record number printed in the upper margin on the right side of the form. The <u>container's row # appended to the record # on the form uniquely identifies each sample container (unique container ID #). In the case of a multi-container set, such as a set of three associated VOC vials - the set is uniquely identified.</u> Each sample container will be labeled with the following information using a waterproof marker on firmly affixed, water-resistant labels: - unique container ID # - sample collection Date - sample collection Time - initials of person collecting sample - analyses required on pre-printed label - preservation method specified on pre-printed label when preserved at lab - sampling organization name on a pre-printed label Container information will be entered at the sampling point at the time of sample collection with the following exceptions. For containers receiving preservatives in advance, "analyses required" and "preservation method" will be entered onto labels by laboratory staff. For containers receiving preservatives in the field, "preservation method" will be entered at the time individual containers are filled. ## 5.2 Chain Of Custody A chain-of-custody record (SI-FCCR) will be initiated in the field at the time of sampling; a copy will accompany each set of samples (cooler) shipped to any laboratory. Each time responsibility for custody of the samples changes, the new and previous custodians will sign the record and denote the date and time. A copy of the signed record will be made by the receiving laboratory. The final signed SI-FCCR will be submitted with analytical results in the Sampling and Analysis Report. ## **Field Chain of Custody Documentation** All signatures related to sample custody will be made in ink on the SI-FCCR in a timely fashion. One or more signatures will be entered to identify the person or persons who are collecting the samples. Each time the custody of a sample or group of samples is transferred, a signature, date and time will be entered to document the transfer. The signatures, date and time will be entered at the time of transfer; the row # will be used to define which bottles were transferred. A sample will be considered to be in custody if it is in any one of the following states: - 1. in actual physical possession - 2. in view, after being in physical possession - 3. in physical possession and locked up so that no one can tamper with it - 4. in a secured area, restricted to authorized personnel A secured area such as a locked storage shed or locked vehicle specified in the "comments" column, may be used for temporary storage. When using such an area, the time, date, and location of the secured area will be recorded in the "relinquished by" space. The time at which an individual regains custody will then be recorded in the "received by" space. ## **Chain of Custody During Shipping and Transfer of Samples** When samples are shipped, the person sealing the shipping container will enter the time, date and their signature on the SI-FCCR. The laboratory part of the SI-FCCR will be enclosed in the container; the top page (first part) will be retained for the project manager's file. A post office receipt, bill of lading, or similar document from the shipper will be retained as part of the permanent chain-of-custody documentation. One or more custody seals will be affixed over the opening of the shipping container in a manner that precludes opening the container without breaking the seal(s). The laboratory will be instructed to note whether or not the container seal(s) are intact and sign in the appropriate blank on the SI-FCCR at the time of receipt. They will also be instructed to keep a copy and return the original form to the Corp of Engineers with the analysis results. ## 5.3 Field Sampling Log A daily field log of sampling activities will be kept by the
leader of the field sampling crew. This record or log will supplement information entered on the SIF. At a minimum, the log will contain a record of the following items: - list of field personnel present - field conditions as described below in Section 5.5, "Field Conditions" - a summary of how samples were transferred/transported to laboratories - description of exceptions to this protocol including specification of which samples may have been impacted by exception(s) (see below) - For each well sampled: - -the unique SI-FCCR # used to identify samples - -well name and Minnesota unique well number - -date and time that sampling began and ended - -list of primary and QA/QC samples sent to each laboratory - -any alias cross-reference list for QA/QC samples ## **5.4 Exceptions To Sampling Protocol** This protocol defines the procedures to be, followed during this sampling event. Exceptions to this protocol will be noted on the SIF and detailed in the Field Sampling Log (see above). The section titled "Exceptions to Protocol" in the Sampling and Analysis Report will include the following details for each exception: - the reason for the exception - the identification of all samples and individual parameters that may have been impacted either in terms of the quantitative or legal integrity of their reported values - the significance of the potential impacts to the integrity of each parameter for each sample If there has been any potentially significant impact on sample integrity, then the potential impact for each parameter for each sample affected will be footnoted whenever the results are reported or referred to in the Sampling and Analysis Report. ## 5.5 Field Conditions Field conditions during the sampling event will be recorded on the SIF (using the "comment" field on the reverse side, if necessary). The Sampling and Analysis Report will include a statement regarding the likelihood that any unusual field conditions had a significant impact on the integrity of results. Field conditions reported will include but not be limited to the following: - air temperature - wind speed - precipitation/moisture - ambient odors - airborne dust ## 6.0 SAMPLE PRESERVATION, HANDLING AND TRANSPORT This section describes procedures that will be followed between the time samples are collected and the time they are either shipped or delivered to an analytical laboratory. ## **6.1 Sample Preservation** Samples will be preserved as shown in Table 3. All Chemical preservatives, added to containers in the laboratory or field will be produced and controlled within the laboratory's QA/QC program. Field supplies of preservatives and sample containers with pre-dosed preservatives will be discarded and replaced with fresh preservatives no later than 14 days after receipt from the laboratory. All samples will be thermally preserved in the field immediately after sample collection by placing the samples in an insulated ice chest containing uncontaminated Blue Ice. (Regular ice may be used if blue ice is unavailable. If so, particular care will be taken to assure that paper work and sample labels are not damaged by water. The regular ice will be placed inside uncontaminated leak-proof plastic containers and the chain of custody record will be placed inside a Zip Lock bag.) The ice chest temperature will be checked by measuring the temperature of the water within the temperature blank container and recorded just before transporting samples and upon receipt at the laboratory, to verify whether or not samples are kept refrigerated at approximately 4 degrees C. ## **6.2 Sample Handling And Transport** All ice chests shipped will be accompanied by an SI-FCCR form and contain a complete address and return address both inside and out. The samples will be kept at approximately 4 degrees C during transport to laboratories. Before transporting samples, field personnel will perform the following tasks: - 1. Verify that laboratory personnel will be present to receive samples when they arrive. - 2. Verify that laboratory personnel understand chain of custody and sample storage/preservation requirements. - 3. Check labeling and documentation to ensure sample identity will be clear to laboratory personnel. - 4. Hand deliver or ship samples in a manner that ensures samples will remain cool (about 4 degrees Celsius) until received by laboratory personnel. - 5. Maintain the chain-of-custody according to procedures described above. ## TABLE 1 – WATER ANALYSIS | WAT | | ABLE I – WATER
ESTING AND REP | ORTING PROTOC | ΟΙ | |--|--------------------|----------------------------------|------------------------------|----------------------| | WAI | LEK QUALITY T | ESTING AND KEP | TESTING | APPROX. | | PARAMETER | TESTING
METHOD | CITATION | METHOD OR
PROJECT PQL* | NUMBER OF
SAMPLES | | Alkalinity | EPA 310.1 or 310.2 | (MCAWW)
(EPA/600/4-79/020) | 10 mg/l as CaCO ₃ | 96 | | Hardness | EPA 130.1 or 130.2 | (MCAWW)
(EPA/600/4-79/020) | 10 mg/l as CaCO ₃ | 96 | | Nitrate+Nitrite
Nitrogen | EPA 353.1 or 353.3 | (MCAWW)
(EPA/600/4-79/020) | 0.1 mg/l | 96 | | Nitrite Nitrogen | EPA 354.1 | (MCAWW)
(EPA/600/4-79/020) | 0.1 mg/l | 96 | | Nitrate Nitrogen | CALC. | | 1 ug/l | 96 | | Arsenic | EPA 206.2 | (MCAWW)
(EPA/600/4-79/020) | 0.1 ug/l | 96 | | Cadmium | EPA 213.2 | (MCAWW)
(EPA/600/4-79/020) | 1 ug/l | 96 | | Chromium | EPA 218.2 | (MCAWW)
(EPA/600/4-79/020) | 1 ug/l | 96 | | Copper | EPA 220.2 | (MCAWW)
(EPA/600/4-79/020) | 1 ug/l | 96 | | Lead | EPA 239.2 | (MCAWW)
(EPA/600/4-79/020) | 1 ug/l | 96 | | Nickel | EPA 249.2 | (MCAWW)
(EPA/600/4-79/020) | 1 ug/l | 96 | | Zinc | EPA 289.2 | (MCAWW)
(EPA/600/4-79/020) | 1 ug/l | 96 | | Iron | EPA 236.2 | (MCAWW)
(EPA/600/4-79/020) | 1 ug/l | 96 | | Manganese | EPA 243.2 | (MCAWW)
(EPA/600/4-79/020) | 1 ug/l | 96 | | PCB's and
CHLORINATED
PESTICIDES** | | | | | | Total PCB's (Arochlors 1016, 1221, 1232, 1242, 1248, 1254, 1260) | SW-846
8082 | SW-846 Update IVB | 2 ug/l | 12 | | Aldrin | SW-846
8081 | SW-846 Update IVB | 0.04 ug/l | 12 | | Alpha BHC | SW-846
8081 | SW-846 Update IVB | 0.03 ug/l | 12 | | Beta BHC | SW-846
8081 | SW-846 Update IVB | 0.06 ug/l | 12 | | Delta BHC | SW-846
8081 | SW-846 Update IVB | 0.09 ug/l | 12 | | Gamma BHC
(Lindane) | SW-846
8081 | SW-846 Update IVB | 0.04 ug/l | 12 | | Heptachlor | SW-846
8081 | SW-846 Update IVB | 0.03 ug/l | 12 | | Heptachlor Epoxide | SW-846
8081 | SW-846 Update IVB | 0.83 ug/l | 12 | |--|----------------|-------------------------------|---------------|----------------| | 4,4 DDD | SW-846
8081 | SW-846 Update IVB | 0.11 ug/l | 12 | | 4,4 DDE | SW-846
8081 | SW-846 Update IVB | 0.04 ug/l | 12 | | 4,4 DDT | SW-846
8081 | SW-846 Update IVB | 0.12 ug/l | 12 | | Dieldrin | SW-846
8081 | SW-846 Update IVB | 0.02 ug/l | 12 | | Endrin | SW-846
8081 | SW-846 Update IVB | 0.06 ug/l | 12 | | Chlordane | SW-846
8081 | SW-846 Update IVB | 0.14 ug/l | 12 | | Methoxychlor | SW-846
8081 | SW-846 Update IVB | 0.5 ug/l | 12 | | Endosulfan I | SW-846
8081 | SW-846 Update IVB | 0.14 ug/l | 12 | | Endosulfan II | SW-846
8081 | SW-846 Update IVB | 0.04 ug/l | 12 | | Endosulfan sulfate | SW-846
8081 | SW-846 Update IVB | 0.66 ug/l | 12 | | Endrin Aldehyde | SW-846
8081 | SW-846 Update IVB | 0.23 ug/l | 12 | | Toxaphene | SW-846
8081 | SW-846 Update IVB | 2 ug/l | 12 | | FIELD
MEASUREMENT
S | | | | | | РН | EPA 150.1 | (MCAWW)
(EPA/600/4-79/020) | 0.1 st. units | Site dependent | | Temperature | EPA 170.1 | (MCAWW)
(EPA/600/4-79/020) | 0.1 deg. C | Site dependent | | Specific
Conductance | EPA 120.1 | (MCAWW)
(EPA/600/4-79/020) | 1 us/cm | Site dependent | | Dissolved Oxygen | EPA 360.1 | (MCAWW)
(EPA/600/4-79/020) | 0.1 mg/l | Site dependent | | Turbidity *Detection limits refer to final a | EPA 180.1 | (EPA/600/R-93/100) | 1 ntu | Site dependent | ^{*}Detection limits refer to final analyte concentrations, including back calculations, and do not refer to the basic instrument detection limits. All detection limits are minimum acceptable levels. **Florosil column cleanup, method 3620, followed by sulfur cleanup, method 3660, may be required to remove interferences. TABLE 2 – SAMPLING SCHEDULE | SCHEDULE |] | Phase | 1 | Phase | e 2 (Tin | ne from da | onset o | f dredg | ing in | con | se 3 (and pletion light) | n of | |-------------------------------|---|-------|------|--------|----------|------------|---------|---------|--------|-----|--------------------------|------| | PARAMETERS | 1 | 2 | 3 | 3 | 17 | 31 | 45 | 59 | 73 | 30 | 60 | 90 | | | | | MO | NITOR | ING W | ELLS (| 2) | | | | | | | Basic Parameters ¹ | X | X | X | X | X | X | X | X | X | X | X | X | | Nit., Alk., Hardness | X | X | X | X | X | X | X | X | X | X | X | X | | Metals | X | X | X | X | X | X | X | X | X | X | X | X | | PCB's, Pesticides | | | | | | | | | | | | | | | | | STAI | NLESS | STEEL | WELL | (1) | | | | | | | Basic Parameters ¹ | X | X | X | X | X | X | X | X | X | X | X | X | | Nit., Alk., Hardness | X | X | X | X | X | X | X | X | X | X | X | X | | Metals | X | X | X | X | X | X | X | X | X | X | X | X | | PCB's, Pesticides | X | X | X | X | X | X | X | X | X | X | X | X | | | | | RES | SIDENT | TAL W | ELLS (| 4) | | | | | | | Basic Parameters ¹ | X | X | X | X | X | X | X | X | X | X | X | X | | Nit., Alk., Hardness | X | X | X | X | X | X | X | X | X | X | X | X | | Metals | X | X | X | X | X | X | X | X | X | X | X | X | | PCB's, Pesticides | | | | | | | | | | | | | | | | R | IVER | AND C | CARRIA | GE WA | ATER | | | | | | | Basic Parameters ¹ | | | | X | X | X | X | X | X | | | | | Nit., Alk., Hardness | | | | X | X | X | X | X | X | | | | | Metals | | | | X | X | X | X | X | X | | | | | PCB's, Pesticides | | | | | | | | | | | | | ^{1 –} Basic parameters
are water temperature, specific conductance, pH, dissolved oxygen, and turbidity. Table 3: Sample Containers, Filling Method, Preservation and Holding Times | Sa | mple Containers, Fill | Table 3 ing Methods, Preserva | ation, and Holding Ti | me | |--|-----------------------|--|---|---------------------------------------| | PARAMETER | BOTTLE
Volume/type | FILL METHOD | PRESERVATION | HOLDING TIME | | Nitrate | 250 ml P | Leave head space | H ₂ SO ₄ /pH<2
Lab, cool | 28 days | | Trace Metals (unfiltered) | 500 ml P | Leave head space | HNO ₃ /pH<2
Lab, cool | 6 months | | Trace Metals (filtered) | 500 ml P | Filter
(0.45 micron)
No head space | HNO ₃ /pH<2
Lab, cool | 6 months | | Non-volatile organics (pesticides & pcb's) | 2x1L AG | No head space | Cool | 7 days extraction
40 days analysis | ## (1) PARAMETER NAMES/GROUPS Some of these parameter names {e.g., "trace metals"} actually represent a set of several or many individual analytes. Specific analytes for each parameter/bottle type are listed in Table 1. ## (2) BOTTLE TYPE L: liters; AG: amber glass bottle fitted with Teflon lined cap ml: milliliters; P: polyethylene; ## (3) FILL METHOD No head space - fill container completely; container will not be rinsed; overfilling will be minimized. <u>Leave head space</u> - fill container about 90 to 95% full - do not allow preservative (if present) to be diluted by overfilling container. Filter [0.45 micron] - filter in-line with positive pressure through a filter with 0.45 micron pore size. ## (4) PRESERVATION <u>Cool</u> - place container inside sealed Zip-Lock bag; place in cooler with sufficient ice to quickly bring temperature down to 4 degrees C and hold at approximately 4 degrees C until received by laboratory personnel. $\underline{\text{H}_2\text{SO}_4/\text{pH}\leq 2}$ - add a predetermined amount of high-purity H_2SO_4 , to sample to bring the sample pH down to 2 or less. <u>HNO₃/pH<2</u> - add a predetermined amount of high-purity HNO₃, to sample to bring the sample pH down to 2 or less. Lab - preservative added to container in laboratory before going into the field. 7.0 ATTACHMENT ## SAMPLE IDENTIFICATION - FIELD CHAIN OF CUSTODY RECORD # Sheet of | ed (Y, N) | Hazardous Materials Suspected (Y | | | | oped to: (specify laboratory) | |--------------------|----------------------------------|--------|-------------------------|---------|-------------------------------| | Grab or composite? | Sample Medium: etc.? | | tel# | | | | Tel# | Organization: | | | County: | . Location City: | | | Report to: | ate: / | Sample Collection Date: | Sample | ect Name/# | | Person | nel | Pers | onnel | | | R | Sar | 12 | == | 10 | 9 | 8 | 7 | 9 | G | 4 | ω | N | | Row | | S | ŝ | Ð | Ĭ | |-----------------------------------|--|--|-------------------------------|--|--|-----------------------|--|----|----|----|-----|---|---|---|---|---|---|---|---|--|--|---|--------------------------------------|---------------|-----------------| | | | | Shipping N | | | Row/ ID#(s) | npling Persor | | | | | × | | | | | | | | (Common Well
Name) | Sampling
Point | Shipped to: | Shipped by: | Gen. Location | Linden Maille/# | | Sample Destruction Authorized by | Custody Seals intact at lab? (Y. N. N/A) | Chain of Custody maintained through 1) sealing for shipment or 2) delivery to lab: (Y, N) (signed) | Shipping Method/Carrier | | | Relinquished by (sign | Sampling Personnel (name and organization) | | | | | | | | | | | | | (Site/Facility Name) | Location | (specify laboratory) (and address | | City: | | | | A) Sample Temp. |) sealing for shipr | | | | (signature in ink) | | | | | | | | | | | | | | (Date plus military time preferred: yyrnmddhhmm) | Field Sample
Event ID# | | | County: | | | | °C. | ment or 2) | | | | | | | | | (9) | | | | | | | | | Spit, Field Ambient Air
Blank, Field Methods
Blank, Trip Blank
code or abbreviate | Sample
Type | | | V: | Month | | Destro | Verified for lab by | delivery to | _ Shipping | | | Received | | | | | | | | | | | | | | (time sample
bottle was filled) | Time | | tel# | | | | | or lab by (signed) | lab: (Y, N) (s | Shipping Receipt attached (Y, | | | by (signature in ink) | | | | | | | | | | | | | | Volume # | Sample
Containers | | | | Month day year | | , | ed) | igned) | z | | | | | | | | | | | | | | | | | Time Pore Size | Filtration (If filtered, enter.) | Hazardous Materials Suspected (Y, | Sample Medium: surface water, | Į. | | | | | | Comments | | | Date | | | | | | | | | | | | V | | 3 NaOH
4. H2SO4
Time | Presei | Naterials Su | Ground w.
surface w
iUm: etc.? | - | | | Da | Da | Date | | | | Time | | | | | | | | | | | | | | | Preservation HCI 5.K2C/207 HNO3 6.Ice only | spected (Y | aler,
aler, | | | | | Date Time | ateTime | | | | Comments | | | | | | | | | | | | | | LF = lifer in lab - dissoved phase only
S = analyze solids/particulates only
O = Other (specify) Fraction Parameter(s)/method | | .` Z) | Grab or composite? | Tel# | | | Form GWS #5-A
Revised 10-13-94 | | | | | | | | 12 | = | 10 | 9 | 8 | 7 | 6 | 5 | 4 | ω | N | 1 | Rov | | | | | | # WELL PURGING - FIELD WATER QUALITY MEASUREMENTS FORM* Side 1 of 2: Sheet of _____ | Project Name/# | Project Name/# | | | | Date | | Facility ID (for IGWIS data entry only | | data entry only) | | | | |-------------------------|--------------------------|----------------------------------|--|---|------------|--|--|------------|---|--------------|--------------------|--| | Field Personnel | onnel | | | | | | Station ID (tor IGWIS | | data entry only) | | | | | Sampling | Sampling Organization | | | | | | Purging Device (type of pump, bailer, etc):* | e (type of | pump, bail | er, etc):* | | | | Submersib | le pump with | direct line to | Flow Cell used | Submersible pump with direct line to Flow Cell used for all measurements? | nents? (Y, | N)* | Pump Intake or Bailer set at (tt. below MP) | or Bailer | set at (tt. | below MP | | | | Time
(24 hour clock) | DTW
below MP
(ft.) | Purge Rate (specify units below) | Cumulative Volume Purged (specify units below) | Water Column
Volumes
Purged | Temp. | Electrical
Conductivity
(μMhos/cm) | Specific
Conductance
(µMhos/cm) | рН | Eh (mv) | DO
(mg/l) | Turbidity
(NTU) | Comments (At appropriate time enter "static water level", "purging began", describe sample appearance, odor) (attenuity, list sampling point when recording data for multiple sampling points) | | 147 | H | Date | te iß | | | | | | | | | | | CAI IRRATION | Z | Time (24 hour clock) | | | | | | | | | | | | | | Calibration: Summary Comments* | ımmary | 1 or 2 pt. | k= | 1 | Buffers | *************************************** | Type | | | ## WELL PURGING - FIELD WATER QUALITY MEASUREMENTS FORM | | | | | (F | (Reverse Side) | | | Ω | Side 2 of 2; Sheet of | |--|-------|--|---------------------------------------|----|----------------|--------------|------------------------------|---------------------|-----------------------| | Location (Site/Facility Name) Project Name/# | | | | | | | Sampling Point (common name) | common name) | | | CALIBRATION | Temp. | Electrical
Conductivity
(µMhos/cm) | Specific
Conductance
(µMhos/cm) | PH | Eh
(mv) | DO
(mg/l) | Turbidity
(NTU) | GUIDANCE
REMARKS | Comments | | DATE | | | | | | | | | | ## GROUND WATER SAMPLING INFORMATION FORM* Side 1 of 2" | Location (Site/Facility Name) Project Name/# Field Personnel Sampling Organization Weather ©? | | Type (r Field S Facility | ing Point (common name) mon. well, spring, etc.) Sample (Event) ID#* ID (for IGWIS data entry) | | |---|--|---|---|-----------| | Read from left to right Well Depth (ft. below MP) Static Depth to Water (below M Water Column Length (L) (ft.) Condition: Securely Locked? | Casing P) Static One V | g Station (Well) D g Diameter (inches) DTW (ft. below GS) VC Volume (cu. ft.) n (Well) Damaged? Yor | Open Interval (depth below GS) 1 Date Time One WC Volume (gals) | (0.1 ft.) | | Read from left to right PID/FID Reading @ Wellhea Free Product (circle: LNAPL or D Well Purging Equipment Purging Date/Time Pump/Bailer Intake Set at Amt.
Purged before Sampling | Pump, baile
Start ©
Feet below | ampled? Yor N / Yor r? / | Background Conc. r N Appearance & Type* Finish / Avg. Purge Rate Purge Protocol ofWCV's me | gpm | | Date/Time Measurements B
Submersible Pump with direct
All Field Measurement Inst
All Field Water Quality Param | egan
et line to Flow Cell us
struments Calibrate
neters Stabilized accor
epresent: (1) stabiliza | ed for all Field Water Qualed according to Protocolording to Protocol Criteria ation, (2) sample water co | ge Rate for Measurements (gpm)
lity Measurements? | | | Field Measurement Temperature Electrical Conductivity Specific Conductance pH Dissolved Oxygen Eh Turbidity | Value Ti ° C μMhos/cm μMhos/cm Standard Units mg/I mV NTU | | Comments* ading_x magnitude x k sted to 25 ° C | | | Pump Intake/Bailer Set at (ft. | pailer)*Y or N Dedic | cated Equipment? Y or Interval Samples | edium(well water, LNAPL, etc.)* N Used Same Equip, for Purge? Represent (ft, below GS) Top = / Bottom | Y or N | | Sheet | | of | | |-----------|---|----|--| | Side 2 of | 2 | | | | | | GROUND V | VATER SAMPLING
(Reverse | INFORMATION FOR | IM* | Side 2 of 2 | |--|--|--|--|---|---|---| | ABBREVIA | ATIONS | 3.7 | | | | | | ft. | feet | MP | Measuring Point | | GS | Ground Surface | | DTW | Depth to Water | WC | Water Column | | cu. ft. | cubic feet | | Y | Yes (circle if appropriate) | N | No (circle if appro | | gals | gallons | | PID | Photo Ionization detector | FID | Flame Ionization | detector | ppm | parts per million | | gpm | gallons per minute | Amt. | amount | a war war | k | cell constant | | EC | Electrical Conductivity | LNAPL | light non-aqueus | phase liquid (floater) | DNAPL | dense non-aqueus phase liquid (sinker) | | The "Field
sample co | ontainers is filled. This set of sam | ples would no
C samples ar | ormally be collected
a normally assigned | d very closely togeth
d temporary aliases | er in time
(see belo | ainer of a purposefully associated set of and include containers for a number of two) For example, if the first of a set of the set should be 9212191330. | | The wate | CORMATION
r column length (L) is calculated b
distances must be referenced to t
with the assumption that both the | he same datu | ım: either from the | measuring point (N | MP) or from | L = well depth - DTW. However, both
m ground surface (GS). This form was
a MP. | | be measu
reference
the field. | ured directly. In addition, this value to GS. For the calculation of L | alue will indic
in this case,
stick up is a | cate where the st
the "stick up", the
positive number fo | atic water level is r
e distance from the
or this calculation. E | elative to
MP to GS
inter the | renced to the MP is unknown or cannot the open (screened) interval which is, needs to be looked up or measured in stick up distance hereft. (to the GS). | | radius in | feet (since well specifications are | normally giv | en as diameter in | inches, the diameter | must be | ft. ²] L [ft.] [7.48 gallons/ft3], r = wel
converted from inches to feet and ther
"/0.163; 4"/0.653; 6"/1.47; 8"/2.61. | | whether a
voltage_
thickness | the concentration of organic vapor | er wellhead a
trument here
ted? { Y , N | nd ambient backgro | ound readings. Here
If free | specify t | On the front side of this form, circle he calibration gas, lamp was detected, describe appearance, | | FIELD W | ATER QUALITY MEASUREMENTS v cell was not used, describe | S AND OBSE | RVATIONS
ements were tak | en (note whether | or not m | easurements were taken down hole) | | Other Co | mments and Observations | | | | | | | | COLLECTION equipment details (Mfgr., Model# | , tubing, etc. |): | | | | | Fictional
sheets to
sample id | control Samples sampling point name(s) and field s distinguish them from primary sal dentifiers on front side of sheet. N total # of QC samples collected: R | mples withou
lame(s)/ID#(s | t tipping off labora
) | tories. List aliases h | nples on s
nere to do
ambient ai | ample labels and chain of custody cument their association with primary r blanks Field methods blanks | | Protocol
Indicate t
of the ag
A) A sligi
B) An uni
C) A non
D) A deta
E) A deta | codes: 1. the type of sampling protocol follo | wed by selections of the age t | ncy program
g protocol, approventions
andard sampling period with the sampling protocol with the sampling protocol with the sampling protocol without adequate | that a ed as a site-specific rotocol, approved as h adequate QA/QC p a QA/QC procedures | pproved t
protocol
a non sit
procedure | s was followed; | | B) Sampi
all field | codes: 2 ling observed by(agen ling observed by "neutral" observe d protocols except as noted below er A or B applies (comment): | r (signature)_ | il field protocols ex | ccept as noted belov
approved | v: (agency
by | r signature)(agency) to meet | | PROTOC | OL EXCEPTIONS uss protocol exceptions for sampli | ng-related fiel | d work(attach addition | al shoes if necessary); | | | OTHER REMARKS(2) Form GWS #4R Other forms normally used to support this form include GWS #1 for Purging & WQ Measurements, GWS #3 for Sample ID/Chain of Custody, GWS#4 for Water Levels. Revised 09-07-94 DACW37-03-T-0011 Addendum III Pricing Sheet For the purpose of standardization, interested parties must complete and submit this document with their quotation. In order for an interested party to have a complete quotation package, the package must contain the following items: | pace | kage, th | ne package must contain the to | llowing items | : | | | |-------------|----------|--|---------------|-------------|----------------|-----------------| | | CERT | of the firms completed FAR cla
TIFICATIONS—COMMERCIAL
for additional guidance. | | | | | | | | by of latest state certification for field in the scope of work, for this | | osed by | the perspec | tive quoter, as | | | | de reference materials, (points eted within the last three years. | , | concerni | ng similar ty | pes of projects | | | A cop | by of this document with line iter | m prices and | quote va | alidity period | l completed. | | <u>Item</u> | No. | Description | Quantity | <u>Unit</u> | Price | <u>Amount</u> | | 000 | 1 | Ground, well water collection, | 1 | LS | \$ | \$ | | | | Sampling, testing in accordance | ce | | | | | | | with scope of work, (Addendur | m I). | | | | | I cer | tify tha | t this quote is valid for a period | of da | ys. | | | | | | N | lame | | | | | | | C | Organization | | D | -
Pate |